

Dipartimento di **INFORMATICA**

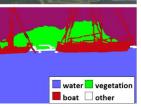
Laurea magistrale in ingegneria e scienze informatiche

Localizzazione *Kalman Filter*

Corso di Robotica Parte di Laboratorio

Docente: Domenico Daniele Bloisi



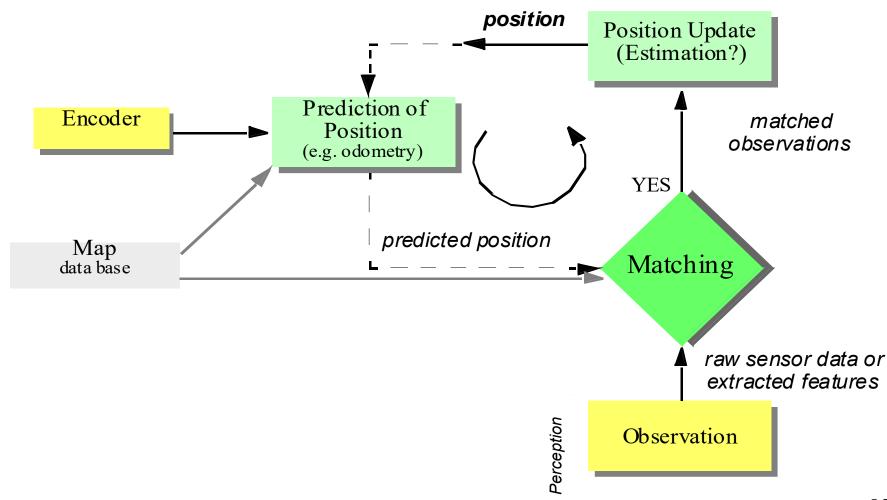


References and credits

Slides derived/borrowed from:

Introduction to Autonomous Mobile Robots R. Siegwart and I. Nourbakhsh

Localization, Where am I?



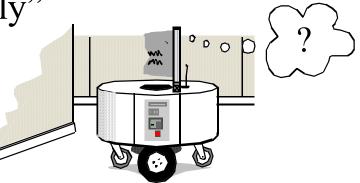
Localization, definitions

Global localization

→ Its position must be estimated from scratch

Position Tracking

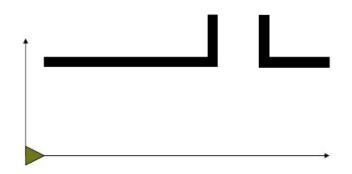
A robot knows its initial position and "only" has to accommodate small errors in its odometry as it moves



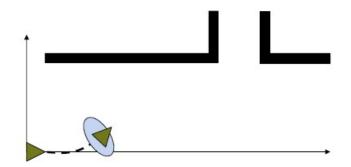
How to localize?

- Localization based on **external sensors**, beacons or **landmarks**
- Odometry
- Map based Localization without external sensors or artificial landmarks, just use robot onboard sensors

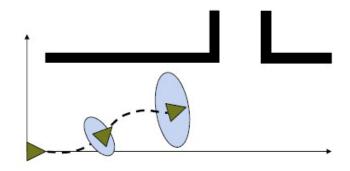
• Consider a mobile robot moving in a known environment



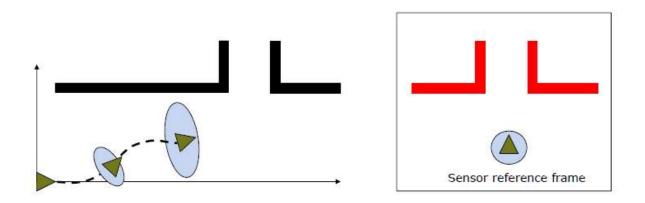
- Consider a mobile robot moving in a known environment
- As it starts to move, say from a precisely known location, it can keep track of its motion using odometry



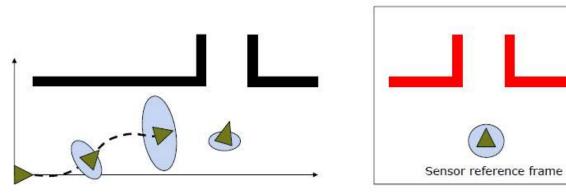
- Consider a mobile robot moving in a known environment
- As it starts to move, say from a precisely known location, it can keep track of its motion using odometry



- Consider a mobile robot moving in a known environment
- As it starts to move, say from a precisely known location, it can keep track of its motion using odometry

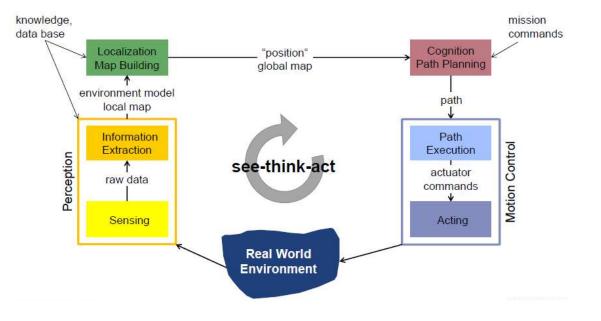


- Consider a mobile robot moving in a known environment
- As it starts to move, say from a precisely known location, it can keep track of its motion using odometry
- The robot makes an observation and updates its position and uncertainty



Challenges of Localization

- Knowing the absolute position (e.g., GPS) is not sufficient
- Localization in human-scale in relation with environment
- Planning in the *Cognition* step requires more than only position as input



Challenges of Localization

- Perception and motion plays an important role
 - > Sensor noise
 - > Sensor aliasing
 - *Effector noise*
 - > Odometric position estimation

Sensor Noise

- Sensor noise in mainly influenced by environment e.g., surface, illumination ...
- or by the measurement principle itself e.g., interference between ultrasonic sensors
- Sensor noise drastically reduces the useful information of sensor readings. The solution is:
 - *>* to take multiple reading into account
 - > employ temporal and/or multi-sensor fusion

Sensor Aliasing

- In robots, non-uniqueness of sensors readings is the norm
- Even with multiple sensors, there is a **many-to-one** mapping from environmental states to robot's perceptual inputs
- Therefore the amount of information perceived by the sensors is generally insufficient to identify the robot's position from a single reading
 - > Robot's localization is usually based on a series of readings
 - Sufficient information is recovered by the robot over time

Example of Sensor Aliasing in Humans

http://www.verona.net/it/monumenti/giardino_giusti.html

Effector Noise: Odometry, Dead Reckoning

- Odometry and dead reckoning: Position update is based on proprioceptive sensors
 - >Odometry: wheel sensors only
 - Dead reckoning: also heading sensors
- The movement of the robot, sensed with wheel encoders and/or heading sensors is integrated to the position.
 - Pros: Straight forward, easy
 - *Cons: Errors are integrated*
- Using additional heading sensors (e.g., gyroscope) might help to reduce the cumulated errors, but the main problems remain the same

Odometry: Error sources

deterministic (systematic) (random)

 \succ deterministic errors can be eliminated by proper calibration of the system.

non-deterministic errors have to be described by error models and will always leading to uncertain position estimate.

• Major Error Sources:

> ...

Limited resolution during integration (time increments, measurement resolution ...)

> Misalignment of the wheels (deterministic)

Unequal wheel diameter (deterministic)

> Variation in the contact point of the wheel

> Unequal floor contact (slipping, not planar ...)

Odometry: Classification of Integration Errors

• Range error: integrated path length (distance) of the robots movement

Sum of the wheel movements

• Turn error: similar to range error, but for turns

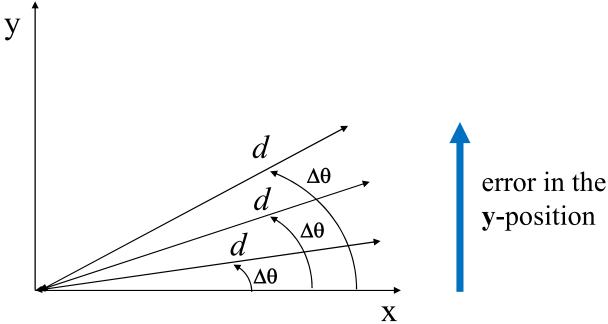
> difference of the wheel motions

• Drift error: difference in the error of the wheels leads to an error in the robots angular orientation

Over long periods of time, turn and drift errors far outweigh range errors!

Odometry: Classification of Integration Errors

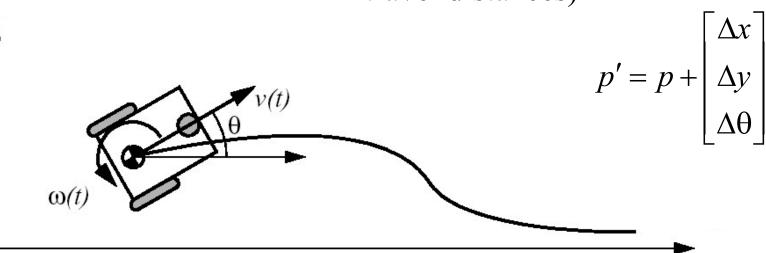
Consider moving forward on a straight line along the x axis. The error in the y-position introduced by a move of **d** meters will have a component of $dsin\Delta\theta$, which can be quite large as the angular error $\Delta\theta$ grows



Odometry: The Differential Drive Robot

Robot Pose
$$p = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

For a differential-drive robot the position can be estimated starting from a known position by integrating the movement (summing the incremental travel distances)



Kinematics

For a discrete system with a fixed sampling interval Δt , the incremental travel distances $(\Delta x; \Delta y; \Delta \theta)$ are

 $\Delta x = \Delta s \cos(\theta + \Delta \theta/2)$ $\Delta y = \Delta s \sin(\theta + \Delta \theta/2)$

$$\Delta \Theta = \frac{\Delta s_r - \Delta s_l}{b} \qquad \Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

This term comes from the application of the Instantaneous Center of Rotation

 $(\Delta x; \Delta y; \Delta \theta)$ = path traveled in the last sampling interval;

 $\Delta s_r; \Delta s_l =$ traveled distances for the right and left wheel respectively;

b = distance between the two wheels of differential-drive robot.

Kinematics

$$p' = p + \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix}$$

$$p' = \begin{bmatrix} x' \\ y' \\ \theta' \end{bmatrix} = p + \begin{bmatrix} \Delta s \cos(\theta + \Delta \theta/2) \\ \Delta s \sin(\theta + \Delta \theta/2) \\ \Delta \theta \end{bmatrix} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \Delta s \cos(\theta + \Delta \theta/2) \\ \Delta s \sin(\theta + \Delta \theta/2) \\ \Delta \theta \end{bmatrix}$$

Kinematics

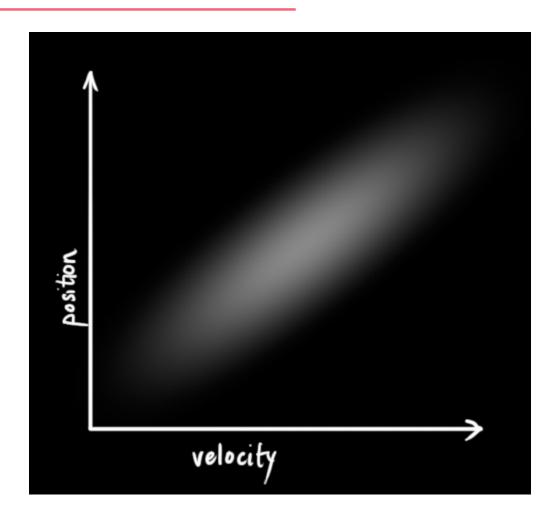
$$p' = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \Delta s \cos(\theta + \Delta \theta/2) \\ \Delta s \sin(\theta + \Delta \theta/2) \\ \Delta \theta \end{bmatrix} \qquad \Delta \theta = \frac{\Delta s_r - \Delta s_l}{b} \qquad \Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

$$p' = f(x, y, \theta, \Delta s_r, \Delta s_l) = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \frac{\Delta s_r + \Delta s_l}{2} \cos(\theta + \frac{\Delta s_r - \Delta s_l}{2b}) \\ \frac{\Delta s_r + \Delta s_l}{2} \sin(\theta + \frac{\Delta s_r - \Delta s_l}{2b}) \\ \frac{\Delta s_r - \Delta s_l}{b} \end{bmatrix}$$

Error Model

covariance is a measure of the joint variability of two random variables

For example, position and velocity



Error Model for the Differential Drive Robot

Goal: we want to establish an error model for the integrated position p' to obtain the covariance matrix $\Sigma_{p'}$ of the odometric position estimate

• We assume that at the starting point the initial covariance matrix Σ_p is known

Error Model

For the motion increment we assume the following covariance matrix:

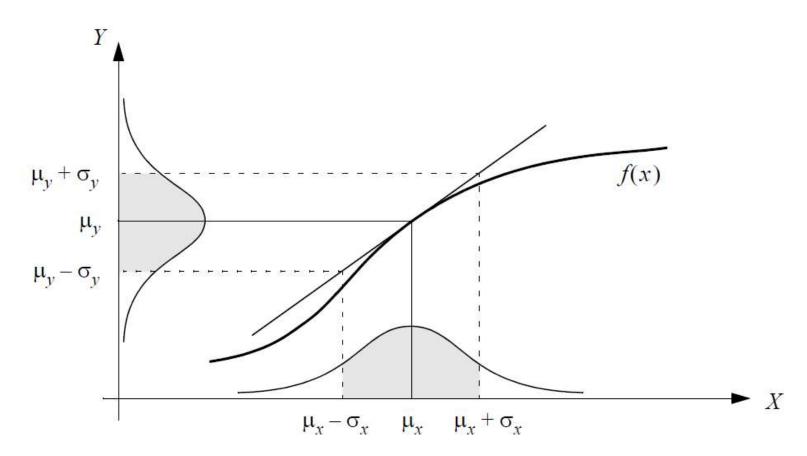
$$\Sigma_{\Delta} = covar(\Delta s_r, \Delta s_l) = \begin{bmatrix} k_r | \Delta s_r | & 0 \\ 0 & k_l | \Delta s_l \end{bmatrix}$$

where Δs_r and Δs_l are the distances traveled by each wheel, and k_r , k_l are error constants representing the nondeterministic parameters of the motor drive and the wheel-floor interaction

Assumptions

- The two errors of the individually driven wheels are independent
- The variance of the errors (left and right wheels) are proportional to the absolute value of the traveled distances $(\Delta s_r; \Delta s_l)$

Error Propagation



One-dimensional case of a nonlinear error propagation problem

Error Propagation Law

The output covariance matrix C_Y is given by the error propagation law:

$$C_Y = F_X C_X F_X^T,$$

where

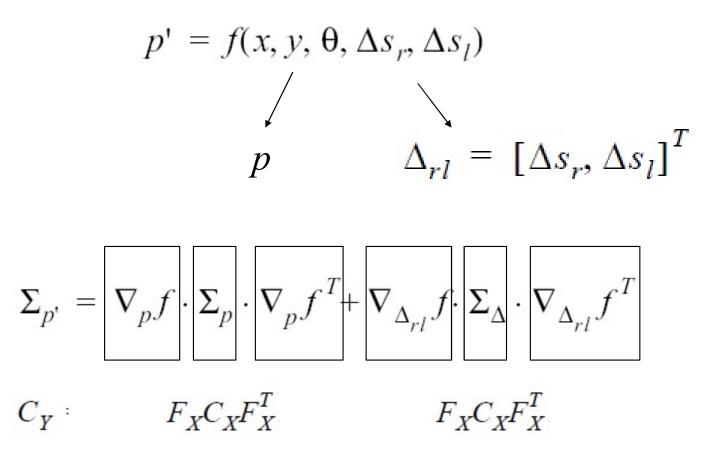
 C_X = covariance matrix representing the input uncertainties;

 C_{γ} = covariance matrix representing the propagated uncertainties for the outputs;

 F_x is the Jacobian matrix defined as

$$F_X = \nabla f = \begin{bmatrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_n} \\ \vdots & \cdots & \vdots \\ \frac{\partial f_m}{\partial X_1} & \cdots & \frac{\partial f_m}{\partial X_n} \end{bmatrix}.$$

Error Propagation

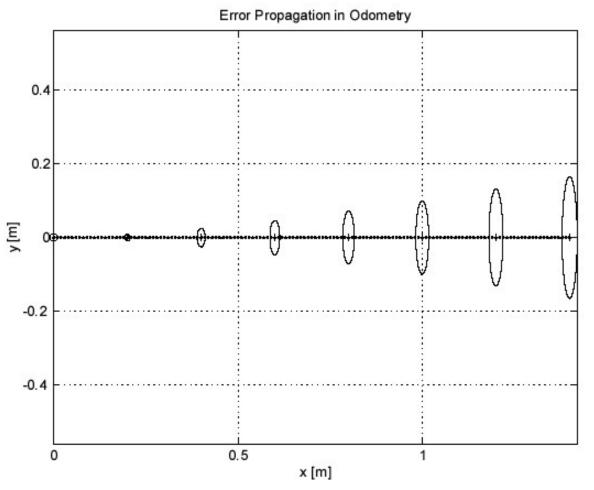


Error Propagation

$$\begin{split} \boldsymbol{\Sigma}_{p'} &= \nabla_{p} f \cdot \boldsymbol{\Sigma}_{p} \cdot \nabla_{p} f^{T} + \nabla_{\Delta_{rl}} f \cdot \boldsymbol{\Sigma}_{\Delta} \cdot \nabla_{\Delta_{rl}} f^{T} \\ F_{p} &= \nabla_{p} f = \nabla_{p} (f^{T}) = \begin{bmatrix} \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial f}{\partial \theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\Delta s \sin(\theta + \Delta \theta / 2) \\ 0 & 1 & \Delta s \cos(\theta + \Delta \theta / 2) \\ 0 & 0 & 1 \end{bmatrix} \\ F_{\Delta_{rl}} &= \begin{bmatrix} \frac{1}{2} \cos\left(\theta + \frac{\Delta \theta}{2}\right) - \frac{\Delta s}{2b} \sin\left(\theta + \frac{\Delta \theta}{2}\right) \frac{1}{2} \cos\left(\theta + \frac{\Delta \theta}{2}\right) + \frac{\Delta s}{2b} \sin\left(\theta + \frac{\Delta \theta}{2}\right) \\ \frac{1}{2} \sin\left(\theta + \frac{\Delta \theta}{2}\right) + \frac{\Delta s}{2b} \cos\left(\theta + \frac{\Delta \theta}{2}\right) \frac{1}{2} \sin\left(\theta + \frac{\Delta \theta}{2}\right) - \frac{\Delta s}{2b} \cos\left(\theta + \frac{\Delta \theta}{2}\right) \\ \frac{1}{b} & -\frac{1}{b} \end{bmatrix} \end{split}$$

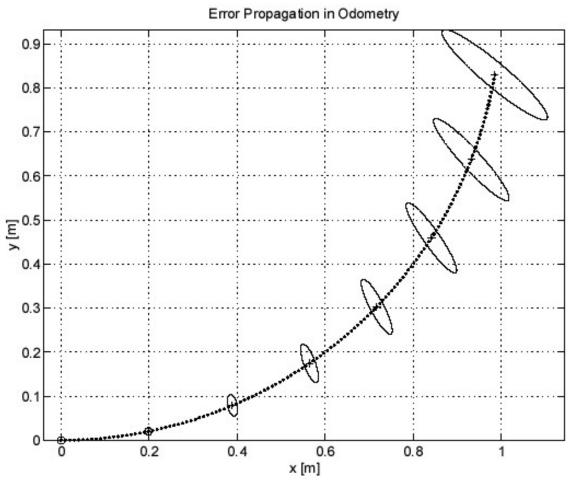
Odometry: Growth of Pose uncertainty for Straight Line Movement

• Note: Errors perpendicular to the direction of movement are growing much faster!

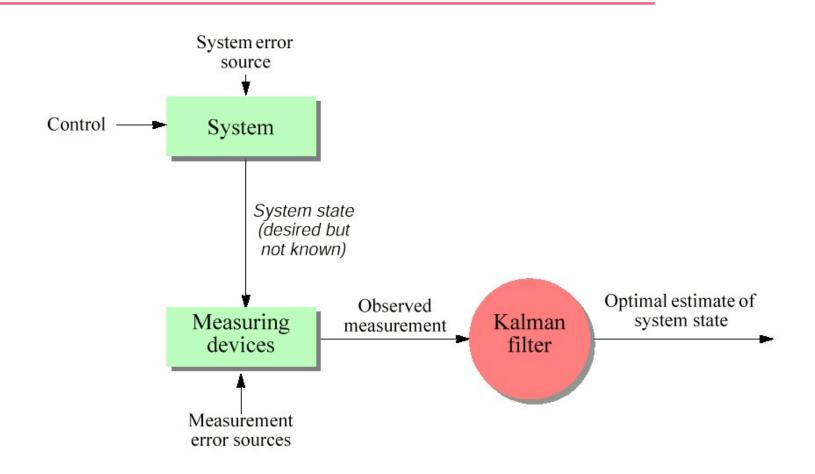


Odometry: Growth of Pose uncertainty for Movement on a Circle

• Note: Errors ellipse does not remain perpendicular to the direction of movement!



Kalman Filter Localization



Introduction to Kalman Filter (1)

• Two measurements

$$\hat{q}_1 = q_1$$
 with variance σ_1^2
 $\hat{q}_2 = q_2$ with variance σ_2^2

• Weighted least-square

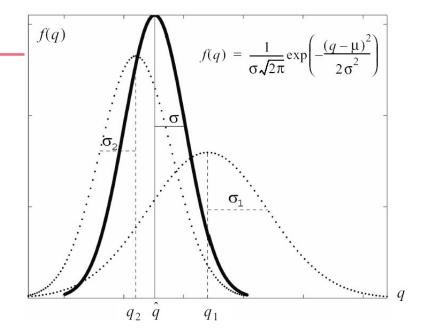
$$S = \sum_{i=1}^{n} w_i (\hat{q} - q_i)^2$$

Finding minimum error

$$\frac{\partial S}{\partial \hat{q}} = \frac{\partial}{\partial \hat{q}} \sum_{i=1}^{n} w_i (\hat{q} - q_i)^2 = 2 \sum_{i=1}^{n} w_i (\hat{q} - q_i) = 0$$

• After some calculation and rearrangements

$$\hat{q} = q_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (q_2 - q_1)$$



Introduction to Kalman Filter (2)

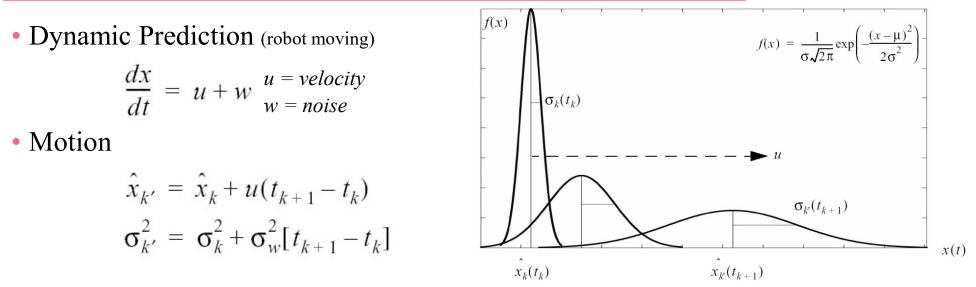
• In Kalman Filter notation

$$\hat{x}_{k+1} = \hat{x}_k + K_{k+1}(z_{k+1} - \hat{x}_k)$$
$$K_{k+1} = \frac{\sigma_k^2}{\sigma_k^2 + \sigma_z^2} ; \ \sigma_k^2 = \sigma_1^2 \quad ; \ \sigma_z^2 = \sigma_2^2$$

$$\sigma_{k+1}^2 = \sigma_k^2 - K_{k+1}\sigma_k^2$$

the best estimate \hat{x}_{k+1} of the state x_{k+1} at time k+1 is equal to the best prediction of the value \hat{x}_k before the new measurement z_{k+1} is taken, plus a correction term of an optimal weighting value times the difference between z_{k+1} and the best prediction \hat{x}_k at time k+1

Introduction to Kalman Filter (3)



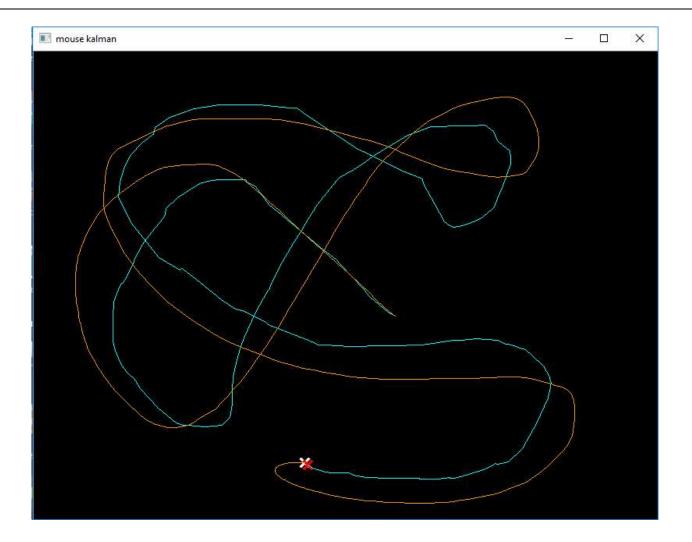
Combining fusion and dynamic prediction

$$\hat{x}_{k+1} = \hat{x}_{k'} + K_{k+1}(z_{k+1} - \hat{x}_{k'})$$

$$= [\hat{x}_k + u(t_{k+1} - t_k)] + K_{k+1}[z_{k+1} - \hat{x}_k - u(t_{k+1} - t_k)]$$

$$K_{k+1} = \frac{\sigma_{k'}^2}{\sigma_{k'}^2 + \sigma_z^2} = \frac{\sigma_k^2 + \sigma_w^2[t_{k+1} - t_k]}{\sigma_k^2 + \sigma_w^2[t_{k+1} - t_k] + \sigma_z^2}$$

Esempio – Mouse Kalman



Quale delle due curve è stata disegnata con il mouse?

Dipartimento di **INFORMATICA**

Laurea magistrale in ingegneria e scienze informatiche

Localizzazione *Kalman Filter*

Corso di Robotica Parte di Laboratorio

Docente: Domenico Daniele Bloisi



