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Localization, definitions

?

• Global localization
The robot is not told its initial position
 Its position must be estimated from scratch

• Position Tracking
A robot knows its initial position and “only” 
has to accommodate small errors in its 
odometry as it moves
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How to localize?

Autonomous Mobile Robots
Roland Siegwart, Margarita Chli, Martin Rufli

• Localization based on external sensors, beacons or
landmarks

• Odometry

• Map based Localization
without external sensors or artificial landmarks, just 
use robot onboard sensors
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Example: Map based localization

Autonomous Mobile Robots
Roland Siegwart, Margarita Chli, Martin Rufli

• Consider a mobile robot moving in a known environment
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• Consider a mobile robot moving in a known environment
• As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry
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Example: Map based localization

Autonomous Mobile Robots
Roland Siegwart, Margarita Chli, Martin Rufli

• Consider a mobile robot moving in a known environment
• As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry
• The robot makes an observation and updates its position 

and uncertainty
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Challenges of Localization

• Knowing the absolute position (e.g., GPS) is not sufficient

• Localization in human-scale in relation with environment

• Planning in the Cognition step requires more than only position as input
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Challenges of Localization

• Perception and motion plays an important role

 Sensor noise

 Sensor aliasing

 Effector noise

 Odometric position estimation
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Sensor Noise

• Sensor noise in mainly influenced by environment 
e.g., surface, illumination …

• or by the measurement principle itself
e.g., interference between ultrasonic sensors

• Sensor noise drastically reduces the useful information of sensor readings.

The solution is:

to take multiple reading into account

employ temporal and/or multi-sensor fusion 
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Sensor Aliasing

• In robots, non-uniqueness of sensors readings is the norm

• Even with multiple sensors, there is a many-to-one mapping from 
environmental states to robot’s perceptual inputs

• Therefore the amount of information perceived by the sensors is generally 
insufficient to identify the robot’s position from a single reading

Robot’s localization is usually based on a series of readings

Sufficient information is recovered by the robot over time
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Example of Sensor Aliasing in Humans

http://www.verona.net/it/monumenti/giardino_giusti.html
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Effector Noise: Odometry, Dead Reckoning

• Odometry and dead reckoning: 
Position update is based on proprioceptive sensors

Odometry: wheel sensors only

Dead reckoning: also heading sensors

• The movement of the robot, sensed with wheel encoders and/or heading 
sensors is integrated to the position.

Pros: Straight forward, easy

Cons: Errors are integrated

• Using additional heading sensors (e.g., gyroscope) might help to reduce the 
cumulated errors, but the main problems remain the same
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Odometry: Error sources

deterministic non-deterministic 
(systematic) (random) 

 deterministic errors can be eliminated by proper calibration of the system. 
 non-deterministic errors have to be described by error models and will 

always leading to uncertain position estimate.
• Major Error Sources:
Limited resolution during integration (time increments, measurement 

resolution …)
Misalignment of the wheels (deterministic)
Unequal wheel diameter (deterministic)
Variation in the contact point of the wheel
Unequal floor contact (slipping, not planar …)
…



Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Odometry: Classification of Integration Errors 

• Range error: integrated path length (distance) of the robots movement

sum of the wheel movements

• Turn error: similar to range error, but for turns

difference of the wheel motions

• Drift error: difference in the error of the wheels leads to an error in the 
robots angular orientation

Over long periods of time, turn and drift errors 

far outweigh range errors!
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Odometry: Classification of Integration Errors 

Consider moving forward on a straight line along the x axis.

The error in the y-position introduced by a move of d meters will have a 
component of dsinDq, which can be quite large as the angular error Dq
grows
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Odometry: The Differential Drive Robot
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Robot Pose
For a differential-drive robot the position
can be estimated starting from a
known position by integrating the
movement (summing the incremental
travel distances)
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Kinematics

This term comes from the application
of the Instantaneous Center of Rotation
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Kinematics
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Kinematics
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Error Model

covariance is a measure of the
joint variability of two random 
variables

For example, position
and velocity
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Error Model for the Differential Drive Robot

Goal: we want to establish an error model for the 
integrated position to obtain the covariance matrix 
of the odometric position estimate

• We assume that at the starting point the initial covariance 
matrix is known
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Error Model

For the motion increment we assume the following covariance matrix:

Assumptions
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Error Propagation

One-dimensional case of a nonlinear error propagation problem
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Error Propagation Law
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Error Propagation

p
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Error Propagation
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Odometry: Growth of Pose uncertainty for Straight Line Movement

• Note: Errors perpendicular to the direction of movement are growing much faster!
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Odometry: Growth of Pose uncertainty for Movement on a Circle

• Note: Errors ellipse does not remain perpendicular to the direction of movement!
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Kalman Filter Localization
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Introduction to Kalman Filter (1)

• Two measurements

• Weighted least-square

• Finding minimum error

• After some calculation and rearrangements
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Introduction to Kalman Filter (2)

• In Kalman Filter notation
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Introduction to Kalman Filter (3)

• Dynamic Prediction (robot moving)

u = velocity  
w = noise

• Motion

• Combining fusion and dynamic prediction



Esempio – Mouse Kalman

Quale delle due 
curve è stata 
disegnata con il 
mouse?
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